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Stark resonances of the Yukawa potential: Energies and widths, crossings and avoided crossings
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The resonance energy spectrum of a system interacting with the Yukawa potential and embedded in an external
homogeneous and static electric field is investigated. The positions and widths of levels have been computed by
using the complex coordinate rotation method. Interesting avoided-crossing and crossing effects appear.
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I. INTRODUCTION

The influence of a static electric field on the hydrogen
atom has been one of the most investigated subjects. For a
review of this problem see [1–7]. Bound and resonance states
supported by the Yukawa potential, in which the Coulomb
attraction is shielded, have also been investigated [8–13].
It seems, however, that the problem of both the shielding
and the electric-field effects on the hydrogen atom has only
been considered for the ground state [14]. In this work we
extend the investigation of both the screening of the Coulomb
attraction, described by the Yukawa potential, and the effect
of a homogeneous static field to excited states.

General expectation as regards the solution for the energy
spectrum of such a system is rather obvious: There are no
strict discrete levels, i.e., no strictly bound states. There
are broadened levels instead, corresponding to resonances of
finite lifetime. The degeneracy characteristic to the isolated
hydrogen atom is removed by both the shortening of the
potential and by the electric field. The split levels are shifted
either down or up by the electric field. This causes levels that
originate from different field-free levels to meet one another
and interact. Following the bound-state-based intuition one
can expect avoided crossings in such cases. However, since
the broadened resonance levels are represented by complex
energies, the positions of levels may also cross. The problem
of crossings and avoided crossings in the context of the Stark
effect in a hydrogen atom has been investigated for several
decades [15–17]. The papers of Rotter and coworkers [16,17]
indicate that, in general, for quantum systems embedded in a
continuum the complex energies may cross either in the real or
imaginary part, including a possibility of complex degeneracy.
Our computations revealed many energy crossing cases with
no interaction of widths and a few cases of strong interaction
causing avoided crossings either in energy or width.

The paper is organized as follows: In Sec. II the method
involving the complex coordinate rotation technique is de-
scribed. This includes details on the basis set used and
convergence of computations. In Sec. III the results are
discussed. The paper is summarized in Sec. IV.

II. METHOD OF COMPUTATION

We consider an axially symmetric system of one particle
subjected to the Yukawa potential and an external homoge-
neous static electric field of strength F . This may correspond

*mirekb@fizyka.umk.pl

to the Stark problem of a hydrogen atom in a medium that
screens the Coulomb interaction. The system is described by
the Hamiltonian (in a.u.)

Ĥ = −1

2
∇2 − e−λr

r
+ Fz. (1)

Because of the field term the energy continuum covers the
whole range from −∞ to +∞. The zero of the energy scale is
kept at the continuum threshold of the field-free system.

We compute resonance energy levels (embedded in
the continuum) and their widths by using the complex
coordinate rotation (CCR) technique [18], which has been
applied to the Stark problems for over three decades [1]. The
coordinate vector �r is transformed to eiθ �r . Hence, instead of the
Hamiltonian given in Eq. (1) we have a non-Hermitian operator

Ĥ (θ ) = −e−i2θ 1

2
∇2 − e−iθ 1

r
e−λreiθ + eiθF z. (2)

The spectrum of such an operator consists of complex
eigenvalues, which are θ dependent. However, among them
there are some eigenvalues independent of θ in a range of
θ . They are isolated in the complex plane and therefore they
are easy to identify. They correspond to resonances. Their
imaginary parts are negative and are related to the half widths
of the resonance levels. Thus, a resonance eigenvalue is

E − i
�

2
, (3)

where E is the position of the resonance level and � is its
width.

We have computed the eigenspectrum of the Hamiltonian
(2) by searching for approximate solutions of

Ĥ (θ )� =
(

E − i
�

2

)
� (4)

in a large trial space spanned by 1500 Slater-type orbitals
(STO) of angular momentum l = 0, . . . ,5 (250 STOs of each
value of l) and m = 0. Since the symmetry is axial (with
respect to z axis), the z component of the angular momentum
is a constant of motion, i.e., m is a good quantum number.
In this work we consider m = 0 states only. We use STOs of
different spherical symmetry (of different l) and allow them to
mix so as to represent axially symmetric functions. The radial
parts of orbitals are of the form

φk(r) = rne−αkr , k = 1, . . . ,250. (5)

The main question is how the spectrum of resonance levels
of such a system changes versus the screening parameter λ or
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FIG. 1. (Color online) The θ trajectories (dependence of a
resonance complex eigenvalue on variation of θ ) obtained for one of
the n = 4 resonances in seven basis sets of different size, N. Labels
at specific points denote values of θ . Each θ trajectory consists of
seven points corresponding to θ = 0.1,0.2, . . . ,0.7 (F = 0.0015 a.u.,
λ = 0.01 a.u.).

versus the field strength F . Therefore, the computations were
performed for various values of F and several values of λ. For
a given set of F and λ, we built the overlap and H (θ ) matrices
and solved the generalized eigenvalue problem repeatedly for
eight equidistant values of θ in the range from 0 to 0.7. The
resonance energies were identified by searching for complex
eigenvalues stable against the variation of θ .

The stability of a resonance eigenvalue against the variation
of θ and the convergence with respect to the size, N, of the
basis set is illustrated in Fig. 1. One can see that with the basis
length increasing the θ trajectory length decreases, i.e., the θ

stabilization becomes better, and the eigenvalue converges to a
well-defined value. The latter is also shown in Table I. Here one
more basis-set result is given, for N=450. The corresponding
θ trajectory lies outside the region covered by Fig. 1. The
case shown in Fig. 1 and in Table I is a typical one; for all
resonances considered in this work the θ stabilization and
convergence were similar to this case.

TABLE I. Convergence of computations for one of the n = 4
resonances with respect to the number of basis functions, N. The real
and imaginary parts of the complex energy, i.e., the energy position,
E, and half of the width, �/2, are given in a.u. The electric-field
strength is F = 0.0015 a.u. and the screening is λ = 0.01 a.u.

N −E �/2

450 0.0245198 0.00306851
600 0.0256389 0.00110536
750 0.0258126 0.00110365
900 0.0258140 0.00110238
1050 0.0258140 0.00110241
1200 0.0258140 0.00110237
1350 0.0258140 0.00110237
1500 0.0258140 0.00110237

TABLE II. The energy, E, and width, �, of the n = 1 Stark
resonance of a hydrogen atom for various values of the dc field
strength, F (all quantities in a.u.; (-x) denotes ×10−x).

F Reference −E �/2

0.05 This work 0.506105 0.38715(−4)
[4,6] 0.506105 0.38592(−4)

0.07 This work 0.513077 0.92386(−3)
[7] 0.513077 0.92358(−3)

0.1 This work 0.527418 0.72695(−2)
[4,6] 0.527418 0.72690(−2)
[7] 0.527419 0.72683(−2)

0.15 This work 0.551063 0.30021(−1)
[7] 0.551067 0.30020(−1)

0.2 This work 0.570124 0.60612(−1)
[4,6] 0.570124 0.60614(−1)
[7] 0.570145 0.60600(−1)

0.3 This work 0.596729 0.13065
[7] 0.596701 0.13059

0.5 This work 0.623116 0.27976
[4,6] 0.623068 0.27974
[7] 0.623068 0.28022

0.7 This work 0.630802 0.42893
[4,6] 0.630711 0.42882
[7] 0.631312 0.42845

1.0 This work 0.624432 0.64717
[4,6] 0.624336 0.64682
[7] 0.626772 0.65332

III. RESULTS

Before presenting and discussing our results let us explain
the notation we use for labeling states. Obviously, when
the effects considered here are on, the hydrogenic principal
quantum number, n, is no longer a strict quantum number.
Nevertheless, if one increases the electric-field strength and
shielding very slowly, one can observe how the hydrogen states
labeled with n (and corresponding energy levels) evolve. In this
sense hereafter we use n to label the states under consideration.
Because of possible avoided-crossing disturbances, we mean
here proximity of the wave function rather than a continuous
character of the level dependence on the field or screening.
Briefly, labeling a state with n means that following the wave
function down the shielding and the field to the point where
they vanish one ends at a state n of field-free and screening-free
hydrogen.

The computations were done for three screening-parameter
values: λ = 0.001,0.01,and 0.1 a.u. and for the field strength
in the range from 0 to 0.002 a.u. (extended up to 0.05 a.u. for the
ground n = 1 state, which responds to the field very weakly).
Our aim is to investigate both effects together. However, to
show the quality of our results, by their accuracy, we compare
them with the literature data for two separate cases: for the
screening-free hydrogen atom in an electric static field and for
the field-free Yukawa problem. In Tables II, III, and IV our
results for energy positions and widths of the ground state and
the first excited state are shown together with the results of
Kolosov [4], Telnov [6], and Nicolaides and Themelis [7]. The
agreement is satisfactory. In general, our results agree better
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TABLE III. The energy, E, and width, �, of one of the n = 2
Stark resonances (the one denoted as 2s + 2p0 in [7]) of hydrogen
atom for various values of the dc field strength, F (all quantities in
a.u.; (-x) denotes ×10−x).

F Reference −E �/2

0.01 This work 0.166093 0.5442(−2)
[4,6] 0.166094 0.5442(−2)
[7] 0.166088 0.5448(−2)

0.015 This work 0.187622 0.1688(−1)
[4] 0.187622 0.1688(−1)
[7] 0.187636 0.1688(−1)

0.02 This work 0.206684 0.3039(−1)
[4,6] 0.206682 0.3039(−1)
[7] 0.206667 0.3041(−1)

0.025 This work 0.224042 0.4483(−1)
[4] 0.224035 0.4483(−1)
[7] 0.223978 0.4480(−1)

0.03 This work 0.240157 0.5982(−1)
[4,6] 0.240147 0.5982(−1)
[7] 0.240435 0.5984(−1)

0.035 This work 0.255297 0.7522(−1)
[7] 0.255222 0.7525(−1)

0.04 This work 0.269614 0.9095(−1)
[4,6] 0.269592 0.9092(−1)

0.05 This work 0.296052 0.1232
[4,6] 0.296011 0.1231

with those of Kolosov [4] and Telnov [6], whose results are,
within the digits given, identical. (The accuracy of Refs. [4,6]
is much better then quoted here.) In Table V our results for the
bound states of the spherically symmetric Yukawa system are

TABLE IV. The energy, E, and width, �, of one of the n = 2 Stark
resonances (the one denoted as 2s − 2p0 in [7]) of the hydrogen atom
for various values of the dc field strength, F (all quantities in a.u.).

F Reference −E �/2

0.01 This work 0.103893 0.1637(−2)
[4,6] 0.103894 0.1639(−2)
[7] 0.103888 0.1632(−2)

0.015 This work 0.096946 0.7540(−2)
[4] 0.096933 0.7526(−2)
[7] 0.096899 0.7566(−2)

0.02 This work 0.088950 0.1549(−1)
[4,6] 0.088983 0.1544(−1)
[7] 0.088966 0.1539(−1)

0.025 This work 0.080025 0.2419(−1)
[4] 0.080165 0.2418(−1)
[7] 0.080177 0.2434(−1)

0.03 This work 0.070473 0.3313(−1)
[4,6] 0.070723 0.3326(−1)
[7] 0.069980 0.3279(−1)

0.035 This work 0.060526 0.4207(−1)
[7] 0.060240 0.4181(−1)

0.04 This work 0.050344 0.5092(−1)
[4,6] 0.050617 0.5169(−1)

0.05 This work 0.029682 0.6818(−1)
[4,6] 0.029526 0.6998(−1)

TABLE V. Energies of lower lying bound states of the Yukawa
potential.

−E (a.u.)

State λ (a.u.) This work Ref. [9]

1s 0.1 0.40705863 0.40705803
0.2 0.32680836 0.32680851
0.3 0.25763894 0.25763858
0.5 0.14811689 0.14811702
1 0.010286071 0.010285789

2s 0.01 0.11529345 0.11529328
0.02 0.10614875 0.10614832
0.05 0.081771444 0.081771195
0.1 0.049928015 0.049928271
0.2 0.012107881 0.012107865

2p 0.01 0.11524537 0.11524522
0.02 0.10596377 0.10596339
0.05 0.080740317 0.080740387
0.1 0.046534212 0.046534390
0.2 0.0041019987 0.0041016465

3s 0.025 0.034329318 0.034329509
0.05 0.019352734 0.019352554
0.08 0.0077760441 0.0077758770

3p 0.025 0.034078634 0.034078910
0.05 0.018557569 0.018557751
0.08 0.0063298847 0.0063299954

3d 0.025 0.033572948 0.033573122
0.05 0.016914928 0.016915570
0.08 0.0032484515 0.0032483604

4s 0.025 0.012503268 0.012503238
0.05 0.0030917043 0.0030916599

4p 0.025 0.012294315 0.012294320
0.05 0.0025980548 0.0025980588

4d 0.025 0.011870454 0.011870448
0.05 0.0015808677 0.0015808716

4f 0.01 0.022099216 0.022098770
0.02 0.014492080 0.014491978

compared with the results of Stubbins [9]. Again the agreement
is good. In the worst case the relative difference defined as
δ ≡ (E − EStubbins)/E is δ � −4 × 10−5. These results also
agree very well with those of Bylicki et al. [13].

Tables II, III, IV, and V give an idea about accuracy of our
results. Now we present in a graphical form the results for the
case where both the screening and the electric field are on.
The results for the m = 0 states of n = 1, . . . ,5 are shown in
Figs. 2–6, respectively. The first characteristics presented are
the energy-level positions plotted as functions of the electric-
field strength. One can see how the hydrogen levels split and
how they are shifted up by the screening. It seems that this shift
is just parallel; i.e., it is field independent. This is an illusion
only caused by a low resolution of plots. In Fig. 7 we plot the
shift, i.e., the difference

�E = Eλ(F ) − Eλ=0(F ), (6)

for levels of n = 1,2,3, for λ = 0.1 a.u. It is clearly visible
now that the shifts depend on the field in a nonmonotonic way
different for different states. Thus there are cross screening-
field effects that cause the screening and field effects not to be
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FIG. 2. (Color online) The energy level of the n = 1 Stark
resonance as a function of the field strength, for three values of the
screening parameter, λ.

additive. The shifts vary in a quite narrow range similar for
all states associated with a given n but different for different
n. Since the screening shortens the range of the potential and
decreases its depth, it is rather obvious that the lower the level
the higher the shift. Figure 7 shows also clearly the zero-field
splitting of levels due to the screening, which is difficult to see
in Figs. 3–6.

The widths of levels are shown in the lower panels of
Figs. 4, 5, and 6, for states of n = 3, 4, and 5, respectively.
(For n = 1 and 2 the widths are extremely small so they are
not very interesting; on the other hand they are very difficult to
compute accurately.) The plots confirm an obvious expectation
that the widths increase significantly as the field and screening
increase. Another feature is that within a family of levels of
a given n the less stable, i.e., those having the largest width,
are the lowest in energy. For all n-families of the Stark levels
presented in Figs. 4–6 we observe that the lower the level the
wider it is. The higher levels are very narrow. Moreover, they
seem to be stabilized by the field; i.e., in some ranges their

FIG. 3. (Color online) The energy levels of two m = 0 compo-
nents of n = 2 Stark resonances for three values of the screening
parameter, λ.

FIG. 4. (Color online) The energy levels (upper panel) and widths
(lower panel) of the m = 0 members of the n = 3 family.

widths decrease as the field increases. This can be seen in
Fig. 4 and Fig. 6 for n = 3 and n = 5, respectively (the details
are shown in the insets). In the case of n = 4 the effect is not
visible in Fig. 5; however, we have checked that it takes place
for a stronger field. The fact that the highest Stark components
are narrower than the other nearest n-manifold members was
already noticed for highly excited states of hydrogen (no
screening) of n = 18, . . . ,28 by Kolosov [5]. The fact that
they are narrower than the separation between them even
when pushed by the field above the zero-field ionization
threshold allowed Kolosov [5] to explain the appearance of
sharp resonances observed [3] in the photoionization spectrum
in that energy region. Recently, Pawlak et al. [19] predicted
similar resonances caused by the highest components of the
Stark manifolds of n = 3, . . . for much stronger electric fields.

In Figs. 3–6 the Stark n-manifolds are shown separately,
selected from all other levels present in the spectrum. In
fact they are not separated from one another and when the
field and screening increase they overlap, causing interesting
interactions of levels. In Fig. 8 the Stark n-families are plotted
(for λ = 0.001 a.u.) as if the levels that approached one
another were simply crossing. It is well known that in most
similar diabatic situations such levels should avoid crossings.
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FIG. 5. (Color online) The energy levels (upper panel) and widths
(lower panel) of the m = 0 members of the n = 4 family.

However, the states we consider here are resonances and their
energies are complex. This opens more possibilities for the
behavior of levels at “crossings.” These problems have been
studied and are reviewed by Okołowicz, Płoszajczak, and
Rotter in [17]. To summarize, such meeting levels do not
have to avoid crossing. Their complex energies may avoid
degeneracy in the complex plane by repelling in widths.
Moreover, in an extreme case, for very specific strength of
interaction (though nonzero) between levels they may cross
both in energy and width (at the so-called double pole of the S

matrix or a branch-point) [17].
Regarding our results, two typical cases are shown in Figs. 9

and 10 where the energies and widths of two states interacting
at approach are plotted against the field strength. An avoided
crossing (repelling in energy), typical for a bound state level
interaction, is shown in Fig. 9, whereas Fig. 10 contains a
crossing (in energy) case where the widths do not cross. It
is worth noting that though eventually at the energy crossing
point the widths repel each other, in a wider vicinity of the
crossing point they attract each other. It should be stated here
that in most cases among our results where the widths of two
levels approaching in energy are extremely different, as the
lowest one of one n-manifold and the highest one of another

FIG. 6. (Color online) The energy levels (upper panel) and widths
(lower panel) of the m = 0 members of the n = 5 family.

n-manifold, the levels do not interact; they simply cross in
energy without a visible disturbance of widths.

It is well known that at avoided crossings the wave functions
are exchanged so that beyond the interaction region things look
like there was no interaction and the levels simply crossed. In
Figs. 11 and 12 the wave functions of interacting states are
illustrated by partial wave decomposition. The contributions
coming from different groups of spherically symmetric orbitals
of l = 0, . . . ,5 (from different partial waves) to the normaliza-
tion unity are plotted there. (It should be mentioned here that
due to large trial expansion of 1500 terms, we cannot follow
the amplitudes that could give information on how the phase of
the wave function changes.) From Fig. 11 one can see that the
composition of the wave function does change dramatically at
the avoided crossing (one state function takes the form of the
other one involved in the avoided crossing), whereas Fig. 12
shows that when the energies are crossing, the wave functions
though disturbed significantly in the interaction region return
to the form they had before. In both cases the character
of the wave function is preserved along the curves plotted
in Fig. 8. Due to the resolution of the figures, the avoided
crossings are not shown but can be seen in a close-up as that
in Fig. 9.
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FIG. 7. The energy shift due to the screening at λ = 0.1 a.u.
defined in Eq. (6) for states of n = 1,2,3.

IV. SUMMARY

Resonances of a charged particle attracted by the Yukawa
potential and under the influence of a static homogeneous
electric field have been investigated. The energies and widths
have been computed by the complex coordinate rotation
method for three values of the screening parameter and a
field strength in the range up to 0.002 a.u. The m = 0 Stark

FIG. 8. (Color online) The n = 3,4, and 5 manifolds of Stark
resonances for the screening parameter λ = 0.001 a.u.

components of the n = 1, . . . ,5 families of states have been
considered. It turned out that the widths are very different
within an n-family of states. The upper components are by
an order of magnitude more stable. Moreover, in the case
of higher components of n-manifolds the results exhibit a
kind of stabilization, i.e., decrease of the width in a range
of field-strength values. It has been found that in contrast to
real-energy (bound) states in most cases the energy levels cross
with no significant disturbance of widths. Two cases when the
levels do interact are presented. One is the avoided-crossing
case in which the wave functions and widths of the interacting
states are exchanged. The other one is the crossing in energies
and avoided crossing in widths. In this case the wave functions
and widths of both states involved are preserved outside
the interaction region. Although for a very specific value of
coupling between the approaching levels a crossing in both
energies and widths may occur [17], we have not come across
such a situation in the present work. A similar two-parameter
case of the hydrogen atom in crossed external electric and

FIG. 9. (Color online) Avoided crossing of the middle Stark component of n = 5 and the highest one of n = 4.
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FIG. 10. (Color online) Crossing of the highest Stark component of n = 5 and one of components of n > 5.

FIG. 11. (Color online) Contributions of spherically symmetric partial waves to the normalization of states that avoid crossing in energy,
in Fig. 9. Left panel: The middle Stark component of the n = 5 manifold. Right panel: The highest component of the n = 4 manifold. The
character of the wave functions is exchanged.

FIG. 12. (Color online) Contributions of spherically symmetric partial waves to the normalization of states whose energy levels cross in
Fig. 10. Left panel: The highest Stark component of the n = 5 manifold. Right panel: One of the components of n > 5. The wave functions
character remains almost unchanged after crossing.
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magnetic fields has been considered by Cartarius, Main,
and Wunner [20]. They have proven the existence of such
exceptional points in their case and presented a procedure for a

systematic search for them. We believe that a similar procedure
could also reveal branch points for the system considered in
this work.
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