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We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold
molecules. It enables us to investigate the importance of the couplings between the projection
states of the rotational motion of the atom about the molecular axis of the diatom. We tested
our theory using the recent results from the Penning ionization reaction experiment 4He(1s2s 3S)
+ HD(1s2)→ 4He(1s2) + HD+(1s) + e− [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demon-
strated that the couplings have strong effect on positions of shape resonances. The theory we
derived provides cross sections which are in a very good agreement with the experimental
findings. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928690]

I. INTRODUCTION AND MOTIVATION

The quantum effects appearing in the translational mo-
tion of reactants, such as tunnelling though a potential barrier
induced by a weak centrifugal force, are usually negligible at
room temperature. As was shown recently, they can dominate
reaction dynamics in cold collision experiments.1–3 In Ref. 1,
a strong kinetic isotope effect was observed by measuring the
Penning ionization reaction rates between metastable helium
and hydrogen isotopologues in the collision temperature rang-
ing from several Kelvin down to 10 mK. The experimental
results were compared with the theory, where the zero-order
perturbational approach with only the leading isotropic term in
the Legendre polynomial expansion of the interaction potential
between the reactants was taken into consideration. In order to
understand reactive collisions in an atom-molecule system that
has very weak long-range anisotropy, one can perform rigorous
and sophisticated quantum mechanical scattering calculations
as have been done by a number of authors (see, for example,
Refs. 4–10).

There has been increasing interest in theoretical works
on the applications of adiabatic theories (primarily adiabatic
capture theories11 and their generalizations12–15) to atom-mole-
cule and molecule-molecule chemical reactions. Recently,
Quéméner and Bohn combined the classical capture theory
with the quantum threshold laws to calculate the reaction rates
of two colliding bodies as a function of collision energy at
low temperatures.12 Idziaszek and Julienne proposed a gen-
eral model with a complex potential for threshold molecular
collision rates based on multichannel quantum defect theory
(MQDT).13 Gao derived from MQDT a universal model of
exoergic bimolecular reactions for a wide range of tempera-
tures.14 In turn, Tscherbul and Buchachenko used the adiabatic
channel capture theory to investigate the dynamics of low-
temperature chemical reactions.15 These capture studies were
conducted in the universal limit, where reactions depend only
on the long range interactions that do not support resonances.

However, most recently, the reaction rates for the Penning
ionization were calculated using QDT by Jachymski and his
co-workers.3,16,17 The theory we developed and are going to
present here is different than QDT. It is based on an adiabatic
theory that in principle can be extended in a systematic way to
provide the exact cross sections and the exact resonance poles
of the scattering matrix which are associated with the meta-
stable complex (formed during the atom-molecule collision).
A comparison between QDT and our findings is beyond the
scope of the present work.

We develop a relatively simple conventional adiabatic the-
ory for cold reactions applying techniques that are well-known
and widely used by chemical physicists. Previously, this kind
of adiabatic theory has been successfully used by Holmgren
et al.18 to reproduce spectroscopic studies of van der Waals
complexes. In this approach, the coupling between angular mo-
mentum projection states could be neglected. Similar approx-
imations have been successful in reducing the dynamics in
H2O–H2 collisions from a 5D problem to a 3D model.19,20

The conventional adiabatic theory18 assumes that in the case
where anisotropy is much smaller as compared to the rota-
tional constant of the colliding molecule, spherically symmet-
ric interaction potentials can be used to describe the collision
process. In this paper, we show that the couplings between the
projection states of the rotational motion of the atom about the
molecular axis of the diatom are enough to introduce the effect
of anisotropy and play a crucial role in reproducing the shape
and positions of scattering resonances in low-energy collisions.

Two alternative theoretical approaches are presented here.
Within the framework of the first-order adiabatic perturbation
theory (APT), the angular momentum of the atom moving
about the center of mass of the diatom is a constant of motion.
However, all possible transitions among the states charac-
terized by the projection of the angular momentum on the
z-axis are included. In turn, within the framework of the
adiabatic variational theory (AVT), the transitions between all
possible different angular momentum states are also taken into
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consideration. A comparison between the measured cross
sections and the theoretical results obtained from first-order
perturbational and variational calculations enlightens the
dominant mechanism of the reaction which takes place dur-
ing the collision experiments at sub-Kelvin temperatures.
The simple theory presented in this work can give physical
insight into reaction dynamics as well as intuitively explain
many phenomena that otherwise would require a full quantum
mechanical treatment. As an illustrative numerical example,
we have applied our theory to calculate the Penning ionization
reaction rate of the excited metastable helium atom and the HD
molecule and compared it with the experimental findings.1

II. THEORY

We consider the effective Hamiltonian for the cold colli-
sion of an atom (A) with a diatomic molecule (M). For the sake
of simplicity and without loss of generality in our approach, we
assume that the interaction potential is given by9,18

V (R, θ) =

j

Vj(R)Pj(cos θ) � V0(R) + V1(R) cos θ

+V2(R)1
2
�
3 cos2θ − 1

�
, (1)

where R is the distance between the atom and the center of
mass of the diatom, while θ is the angle between R⃗ and the
molecular axis. We do not assume here one electronic config-
uration surface since in the electronic structure calculations,
the possibility of ionization due to the electronic correlation is
taken into consideration. See, for example, Ref. 21 for different
methods for calculating complex electronic potential energy
surfaces. Therefore, Γ(R, θ) = −2ImV (R, θ) provides the ioni-
zation decay rate as a function of the geometrical structure of
the three atoms where the distance between the two creating a
molecule is held fixed or is varied adiabatically to follow the
same resonance state.

The Hamiltonian under study is

Ĥ = − ~2

2µA/M

∂2

∂R2 +
L̂2(θ1, φ1)
2µA/MR2 +

L̂2(θ2, φ2)
2µMr2

+ V0(R) + V1(R) cos θ + V2(R)1
2
�
3 cos2θ − 1

�
, (2)

where R, θ1, φ1 are coordinates of the position of the atom
(e.g., the helium atom in its first excited triplet state in the
experiment described in Ref. 1) with respect to the center of
mass of the two-nuclear molecule (e.g., HD in the experi-
ment mentioned above), dR⃗ = sin θ1dRdθ1dφ1, whereas θ2 and
φ2 are the angles of the molecular axis in the same labora-
tory coordinate frame. Due to the assumption about the stiff-
ness of the molecule, the internuclear distance r is held fixed.
The angle θ is the angle between the two vectors R⃗ and r⃗
which as usual can be expressed in terms of the angles θ1, φ1,
θ2, φ2,

cos θ(θ1, φ1, θ2, φ2) = r⃗ · R⃗
r R

= cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2− φ1).
(3)

When the three atoms move on a two-dimensional plane,
then φ2 = φ1 and the above equation is reduced to cos θ
= cos(θ2 − θ1).

A. Adiabatic perturbational approach

Let us first use the adiabatic perturbation theory where the
distance between the atom and the diatomic molecule in the
cold collision experiment is taken as a parameter (and not as a
dynamical variable). In this adiabatic perturbational approach,
the zero-order Hamiltonian consists of two uncoupled rigid
rotors,

Ĥ (0) =
L̂2(θ1, φ1)
2µA/MR2 +

L̂2(θ2, φ2)
2µMr2 . (4)

In turn, the perturbation is given by

Ĥ (1) = V0(R) + V1(R) cos θ + V2(R)1
2
�
3 cos2θ − 1

�
. (5)

Here, r is fixed for the sake of simplicity of our derivation and
R, as we mentioned above, is taken as an adiabatic parameter.
Therefore, we assume that the distance between the atom and
the center of mass of the diatom is varied much more slowly
than the rotational motion of the atom about the center of mass
of the diatom.

The zero-order energy and corresponding wave function
within the adiabatic approximation are as follows:

E(0)
l1,l2

(R) = ~
2l1(l1 + 1)
2µA/MR2 +

~2l2(l2 + 1)
2µMr2 , (6)

ψ
(0)
l1,m1,l2,m2

(θ1, φ1, θ2, φ2) = Yl1,m1(θ1, φ1)Yl2,m2(θ2, φ2), (7)

where {Yl,m} are spherical harmonic functions. Note that the
zero-order energy does not depend on the quantum numbers
m1 and m2. We assume that for all internuclear distances, the
anisotropy is smaller compared to the rotational constant of
a molecule. In such a case, the conventional adiabatic the-
ory given in Ref. 18, where only one relative atom-molecule
angular momentum projection state was considered, predicts
that anisotropic effects are negligible. In our case, this condi-
tion corresponds to the following choice of quantum states
l2 = 0, m2 = 0 and l1 > 0, m1 = −l1,−l1 + 1, . . . , l1 − 1, l1. The
value of l1 depends on the experimental parameters such as
collision energy. Taking the above into account, the zero-order
energy for the atom-diatom collision is

E(0)
l1,l2=0(R) =

~2l1(l1 + 1)
2µA/MR2 . (8)

The total degeneracy is equal to 2l1 + 1.
The adiabatic perturbation operator Ĥ (1) couples the two

rotational vectors R⃗ and r⃗ . Thus, we use functionsψ(0) [Eq. (7)],
as usual, as basis functions5,7,9 to construct the potential matrix
whose elements are as follows:

⟨ψ(0)
l1,m

′
1,0,0

|Ĥ (1)|ψ(0)
l1,m1,0,0

⟩ = V0(R)δm′1,m1 + V2(R)M(l1)
m′1,m1

, (9)

where

M(l1)
m′1,m1

= −1
2
δm′1,m1

+
3
2
⟨ψ(0)

l1,m
′
1,0,0

|cos2θ(θ1, φ1, θ2, φ2 = 0)|ψ(0)
l1,m1,0,0

⟩
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= −
δm′1,m1±2

2(2l1 − 1)(2l1 + 3)

×

 (l1 + m(1)
min + 2)!(l1 − m(1)

min)!
(l1 − m(1)

min − 2)!(l1 + m(1)
min)!

(10)

and m(1)
min = min{m′1,m1}. According to the perturbation theory,

the first-order correction to the energy contains two terms.
One term is V0(R) as expected. The other term is proportional
to V2(R). In turn, V1(R) contributes only to the second-order
correction. Therefore, the first-order correction energy (includ-
ing the m1-degeneracy) to the zero-order energy is given by

E(1)
l1,l2=0(R) = V0(R) + λ(l1)j V2(R), (11)

where λ
(l1)
j , j = 1, . . . ,2l1 + 1, is one of the 2l1 + 1 eigen-

values of matrix (10). The eigenfunctions corresponding to
the eigenvalues {λ(l1)j } are {Ψ(l1)

j }. Note that m̄1 = ⟨Ψ(l1)
j |

− i~ ∂
∂φ1

|Ψ(l1)
j ⟩ = 0 for every j and l1. The derivation details of

the first-order perturbational correction to the adiabatic energy
are given in the supplementary material.22 Eqs. (9) and (10) in
general form in terms of Wigner 3- j symbols can be found in
many works, e.g., in Refs. 5, 7, 9, and 23.

In the next step of the APT for the cold collision experi-
ment, we define a set of uncoupled 2l1 + 1 effective 1D Hamil-
tonians where R is now a dynamical variable and E(1)

l1,l2=0(R)
presented in Eq. (11) serves as a potential. Therefore, within
the framework of the first-order APT, we get

ĤAPT
j,l1,l2=0 = −

~2

2µA/M

∂2

∂R2 +
~2l1(l1 + 1)
2µA/MR2

+V0(R) + λ(l1)j V2(R), (12)

where j = 1,2, . . . ,2l1 + 1. Here, we obtain that l1 referred to
as an atom-molecule collisional partial wave is kept as a good
quantum number.

B. Adiabatic variational approach

Let us use the zero-order solutions given in Eq. (7) as a
basis set. We take the Hamiltonian matrix in the form

Ĥvar
j′, j = −

~2

2µA/M

∂2

∂R2 δ j′, j + V var
j′, j(R), (13)

where

V var
j′, j(R) =


ψ
(0)
j′

�����
L̂2(θ1, φ1)
2µA/MR2 +

L̂2(θ2, φ2)
2µMr2 + V (R, θ)

�����
ψ
(0)
j


(14)

and j denotes a superindex containing quantum numbers l1,
m1, l2, m2 (l1 = 0,1, . . . , l(1)max, m1 = 0,±1,±2, . . . ,±l1, l2 = 0,
1, . . . , l(2)max, m2 = 0,±1,±2, . . . ,±l2). We first diagonalize the
potential matrix Vvar where its elements are as follows:

V var
j′, j(R) =

(
~2l1(l1 + 1)
2µA/MR2 +

~2l2(l2 + 1)
2µMr2 + V0(R)

)
δ j′, j

+V1(R)⟨ψ(0)
l′1,m

′
1,l
′
2,m
′
2
| cos θ |ψ(0)

l1,m1,l2,m2
⟩

+V2(R)1
2
⟨ψ(0)

l′1,m
′
1,l
′
2,m
′
2
|3 cos2θ − 1|ψ(0)

l1,m1,l2,m2
⟩,
(15)

where θ is a function of θ1, φ1, θ2, φ2 (see Eq. (3)). The
dimension of the matrix is [(l(1)max + 1)2(l(2)max + 1)2] × [(l(1)max
+ 1)2(l(2)max + 1)2]. All matrix elements can be calculated based
on our analytical expressions given in the supplementary
material.22 Thus,

Vvar(R)v j(R) = V ad
j (R)v j(R), (16)

where V ad
j (R) and v j(R) are eigenvalues and eigenvectors,

respectively, j = 1,2, . . . , (l(1)max + 1)2(l(2)max + 1)2. Namely,
Vvar(R)v(R) = v(R)Vad(R), where Vad(R) is diagonal matrix
with {V ad

j } j=1,2, ... on diagonal. Consequently,

Vvar(R) = v(R)Vad(R)vT(R). (17)

By carrying out the unitary transformation

H
var = vTHvarv, (18)

one gets the matrix elements ofH var in the form

Ĥ var
j′, j = −

~2

2µA/M

(
vTj′
∂v j

∂R
∂

∂R
+ vTj′

∂2v j

∂R2 + δ j′, j
∂2

∂R2

)
+V ad

j (R)δ j′, j . (19)

In the second step, we perform the adiabatic approxi-
mation assuming that the non-adiabatic terms in the Hamil-
tonian matrix H var are negligible. That is, we ignore the
terms vT

j′
∂
∂R

v j
∂
∂R

and vT
j′

∂2

∂R2 v j in Eq. (19). This approximation
which is equivalent to the Born-Oppenheimer approximation
holds when the adiabatic potential functions are separable and
not get too close to one another since

vTj′
∂

∂R
v j =

vT
j′(∂Vvar/∂R)v j

V ad
j (R) − V ad

j′ (R)
. (20)

Finally, within the framework of the AVT, we have

ĤAVT
j = − ~2

2µA/M

∂2

∂R2 + V ad
j (R), (21)

where j = 1,2, . . . , (l(1)max + 1)2(l(2)max + 1)2. Note that the centrif-
ugal barriers are included inside the effective potentials
{V ad

j (R)} j=1,2, .... It is important to order these potentials such
that for any value of R, V ad

j+1(R) > V ad
j (R). The fact that the

potentials are smooth and do not show an avoided crossing
behavior is an indication of the applicability of the AVT
approach. In the adiabatic variational calculations, we take
into consideration all possible transitions among the different
angular momentum states and also the different angular mo-
mentum projection states during the cold collision experiment.
The maximal values of the angular momentum of the atom and
the diatomic molecule, l(1)max and l(2)max, are determined by the
experiment. In the calculations, they should be varied to get
converged cross sections.

III. APPLICATION OF THE ADIABATIC THEORY
FOR COLD COLLISION EXPERIMENTS

Let us now discuss the illustrative application of our
adiabatic theory towards the cold Penning ionization reaction
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investigated in Ref. 1,
4He(1s2s 3S) + HD(1s2) → 4He(1s2) + HD+(1s) + e−. (22)

The hydrogen deuteride is in the ground rovibrational state
(100% of the HD molecules in the experiment are, using
our notation, in l2 = 0). For the sake of notation simplicity,
the excited helium atom will be denoted as He∗. The phase
shift, δ, is defined such that exp(i2δ) is the ratio between
the amplitudes of the outgoing and incoming waves in the
asymptotes of the solution of the time-independent radial
Schrödinger equation with the adiabatic Hamiltonian derived
above [Eqs. (12) and (21) for the first-order APT and the AVT,
respectively]; for more details see, e.g., page 44 in the textbook
on non-Hermitian quantum mechanics.21 The total reaction
cross section within the framework of APT is given by

σAPT
tot (k) = π

k2

l
(1)
max
l1=0

2l1+1
j=1


1 − exp

(
−4ImδAPT

j,l1

)
, (23)

where k =


2µA/ME/~ and E is the collision energy, i.e., the
relative energy between the colliding atom and the molecule.
Eq. (23) is obtained by the generalization of the expression
derived by using the optical theorem as shown in Ref. 24 where
in our case, the couplings between different m1 states for a
given angular momentum quantum number are included. The
calculations have been performed for l(1)max = 30. As a matter
of fact, the results are fully converged such that increasing
the number of partial waves gives the same result for σAPT

tot .
The total cross section [as well as the Penning ionization reac-
tion rate: (~k/µA/M)σtot] of the excited helium atom and the
hydrogen deuteride has been computed using the expression
for the isotropic radial interaction potential, V0(R), as used in
Ref. 1, the anisotropic radial interaction potentials, V1(R)25 and
V2(R),25 as calculated in Ref. 26, and the APT as described
above. For this case, the position of the center of mass is shifted
along the internuclear axis such that the potential energy sur-
face had to be re-expanded in the shifted coordinate system.1,27

Note that for the collision of an atom with a homonuclear
diatomic molecule, V1(R) = 0 since V (R, θ) = V (R,−θ). When
the diatom is heteronuclear (as, e.g., in the case of HD), then
V1(R) , 0 but is expected to have a small effect on the dy-
namics. The radial interaction potentials, {Vj(R)} j=0,1,2, are
shown in Fig. 1, whereas the reaction rate results are pre-
sented in Fig. 2 together with the experimental and zero-order
theoretical data discussed in Ref. 1. As one can see, the ef-
fect of couplings among the different m1 states (for a given
partial wave) is quite substantial in the He∗-HD collisions
where it introduces a better agreement with the experimental
measurements.

The comparison of the APT results with experiment and
previous zero-order theoretical calculations for the He∗ colli-
sions with HD is performed in order to test the new theory for
collision reactions at low temperatures. However, the appli-
cation of this new theory is not limited to the specific Pen-
ning ionization process. This theory can be used to study and
design experiments where other types of reactions take place,
e.g., where the ionization due to the cold collision process is not
the Penning ionization but the interatomic Coulombic decay
(ICD) mechanism.28,29

FIG. 1. The expanded radial interaction potential terms of 4He(1s2s 3S) with
the hydrogen deuteride, {Vj(R)} j=0,1,2, calculated25 using potential energy
surface from the work of Hapka et al.26 scaled by a factor of 1.15. The 2D
potential energy surface is given by


jVj(R)P j(cos θ), see Eq. (1).

Last but not least, we will show how to apply the adiabatic
variational theory for low-energy collisions of the triplet meta-
stable helium atom with the hydrogen deuteride. As we did
before, we assume that the diatomic molecule is in its ground
rovibrational state during the collision reaction. Within the
adiabatic variational calculations, we take into consideration
the couplings between all possible different l1 and m1 states.
The Hamiltonian that is obtained when the AVT is applied is
given in Eq. (21). The total cross section in that case is defined
as

σAVT
tot (k) = π

k2

(l (1)max+1)2
j=1


1 − exp

(
−4ImδAVT

j,l
(1)
max

)
, (24)

where l(1)max is taken such that the convergence is satisfied. Here,
l(1)max in the calculations equals 30. The computed reaction rate is
presented in Fig. 2. It is compared with available experimental
and theoretical data1 as well as with the results obtained based
on the APT. Both approaches lead to similar results improving
the agreement with the experiment in comparison with previ-
ous theoretical studies.1

FIG. 2. The reaction rate [(~k/µA/M)σtot] of 4He(1s2s 3S), denoted as
He∗, with the hydrogen deuteride observed in Ref. 1 is depicted by black
points. The reaction rate (dashed green curve) has been calculated using the
potential energy surface from the work of Hapka et al.26 scaled by a factor
of 1.15 to correct the energies of the resonances,1 such that they fit the
experiment. The reaction rates calculated based on the same potential energy
surface with the additional correction according to the adiabatic perturbation
theory (APT, solid red curve) and with the adiabatic variational theory (AVT,
dotted-dashed blue curve) are plotted for comparison. Both corrections pro-
duce similar results and make the resonances less symmetric, enhancing the
resemblance to the experiment. The calculations [see Eqs. (23) and (24)] have
been carried out for l (1)max= 30.
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IV. CONCLUDING REMARKS

In summary, the simple theoretical approach that we have
developed using well-known techniques enables us to study the
role of the couplings among the degenerate angular momentum
projection states due to weak anisotropy in cold chemistry
experiments. We have demonstrated that these couplings have
strong effect on positions of shape resonances. Our adiabatic
theory has been applied to the cold Penning ionization reac-
tion as an example to illustrate the insight information on
the sub-Kelvin collision experiment. The presented theory can
be also used for cases where l2 > 0, but this type of appli-
cation is beyond the scope of our paper that focuses on the
representation of the perturbational and variational adiabatic
approaches for cold molecule collisions. Besides helping in
understanding the experiment, the theory might be applied as
a tool for designing new experiments where different types of
mechanisms, which have never been studied before, control the
dynamics. No doubt, the development of theory for these kinds
of experiments is important for new fields of cold chemistry
since it allows investigations of quantum effects in chemical
reactions.
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25P. S. Żuchowski, personal communication (2013).
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