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Abstract
We present general analytical expressions for the matrix elements of the atom–dia-
tom interaction potential, expanded in terms of Legendre polynomials, in a basis set 
of products of two spherical harmonics, especially significant to the recently devel-
oped adiabatic variational theory for cold molecular collision experiments [J. Chem. 
Phys. 143, 074114 (2015); J.  Phys. Chem.  A 121, 2194 (2017)]. We used two 
approaches in our studies. The first involves the evaluation of the integral containing 
trigonometric functions with arbitrary powers. The second approach is based on the 
theorem of addition of spherical harmonics.

Keywords Analytical solutions · Spherical harmonics · Associated Legendre 
polynomials · Atom–diatom interaction potential · Matrix elements

1 Introduction

Atomic and molecular collisions at subkelvin temperatures are a  very sensitive 
probe of the interaction potential. The group of Narevicius conducted a  few years 
ago the first merged-beam experiments for low-energy collisions of atoms with dia-
tomic molecules [1–3]. These experiments were cutting-edge attainments in cold 
controlled chemistry [4–6]. Recently, Narevicius with collaborators directly probed 
the anisotropy in the atom–diatom collisions through orbiting resonances, reveal-
ing its strong role in the interaction energy [7]. Therefore, a high level of theory is 
needed to inspect and elucidate the measurements in the subkelvin regime, where 
quantum effects dominate.

The potential describing the interaction between an atom in an S state and 
a  closed-shell diatomic molecule in the Jacobi coordinate system is a  function of 
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three coordinates (R, r, �) . The orientation of the molecule and the entire complex is 
characterized by the vectors � and � , respectively. Consequently, r is the interatomic 
separation in the molecule, whereas R is the distance from the atom to the center of 
mass (COM) of the molecule. The third coordinate � is the angle between � and � . 
The potential may be conveniently expanded in Legendre polynomials as follows 
[8–10]

where V�(R, r) are radial functions. Note that the terms with � = 1, 3,… vanish for 
homonuclear molecules because V(R, r, �) = V(R, r,� − �) . When we consider 
the atom–diatom complex in the laboratory coordinate frame, the angle � can be 
expressed in terms of four angles �1 , �1 , �2 , �2 [11]:

The angles �1 and �1 specify the direction of the atom–COM axis, whereas �2 and �2 
indicate the orientation of the diatomic bond.

The adiabatic approach in molecular collisions has a long record, going back to 
Levine [12]. Klemperer and coworkers [8] introduced the Born–Oppenheimer sepa-
ration of angular and radial motion for calculating the properties of ground-state van 
der Waals complexes. A similar concept has been adopted by many other authors, 
e.g., for spectroscopic studies of weakly bound molecular systems [13–18] or 
molecular scattering calculations [19–21]. In our investigations, we have employed 
the newly developed adiabatic variational theory (AVT) for cold anisotropic colli-
sion experiments [11, 22, 23] that allows solving the Schrödinger equation, reduc-
ing the multidimensional problem to simpler subproblems without losing physical 
information, and then calculating reaction rate coefficients. It has been successfully 
applied for excited metastable helium atoms (He(23S)) colliding with rovibrational 
ground-state hydrogen molecules, achieving a good, or very good, agreement with 
the experimental data of the Narevicius group [22–25]. The latest work with AVT 
confirms the observed strong quantum kinetic isotope effect in low-energy collisions 
between He(23 S) and hydrogen isotopologues (H2 , HD, D 2 ) and exhibits that the 
change of the rovibrational state of the molecule can significantly enhance or sup-
press the reaction process like a quantum switch [26].

According to AVT, we represent the interaction potential, Eq. (1), in 
a  matrix form in a  basis set consisting of products of two spherical harmonics, 
{Yl1,m1

(�1,�1)Yl2,m2
(�2,�2)} , where l1,m1, l2,m2 are referred to as quantum numbers. 

(1)

V(R, r, �) =
∑

�

V�(R, r)P�(cos �)

=V0(R, r) + V1(R, r) cos � + V2(R, r)
1

2
(3 cos2 � − 1)

+ V3(R, r)
1

2
(5 cos3 � − 3 cos �)

+ V4(R, r)
1

8
(35 cos4 � − 30 cos2 � + 3) + ...,

(2)
cos[�(�1,�1, �2,�2)] =

� ⋅ �

Rr
= sin �1 cos�1 sin �2 cos�2

+ sin �1 sin�1 sin �2 sin�2 + cos �1 cos �2.
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Such a basis set describes the rotations of the entire complex and the molecule. Up to 
date, AVT has been only used with � ≤ 2 [11, 22–27], where the matrix elements were 
calculated directly without using sophisticated methods. For 𝜂 > 2 , the matrix elements 
become much more complicated and difficult to resolve. Therefore, in the present work, 
we derive general analytical angular solutions for the following matrix elements (in the 
Dirac notation)

This is a purely mathematical issue and it boils down to the evaluation of appro-
priate integrals, which can be further used to investigate thoroughly the effect of 
anisotropy on the resonant structure in reaction cross sections and rate coefficients 
of atoms colliding with diatoms. In general, the inclusion of higher terms (𝜂 > 2) 
of the Legendre polynomials expansion in AVT may lead to a better agreement of 
the theoretical predictions with the experimental findings and a deeper understand-
ing of quantum phenomena in chemical reactions (as, for instance, Penning ioni-
zation, interatomic or intermolecular Coulombic decay, Auger effect), especially at 
very low temperatures (below 1 kelvin). Moreover, the first detection of He(23 S) on 
an exoplanet in 2018 [28] significantly extended the role of theoretical chemistry in 
astrochemistry. The interaction and collisions of 2 3 S helium with ubiquitous molec-
ular hydrogen and other diatomic molecules are expected to be intensively studied in 
the next years.

The problem might seem to be similar to the one considered by Percival and 
Seaton in Ref. [29]. The authors found the matrix elements of P�(cos �) in the 
following basis set {

∑
m1,m2

⟨l1, l2,m1,m2�LM⟩Yl1,m1
(�1,�1)Yl2,m2

(�2,�2)} , where 
⟨l1, l2,m1,m2�LM⟩ are the Clebsch–Gordan coefficients. However, they imposed 
constraints that |l1 − l2| ≤ L ≤ l1 + l2 and M = m1 + m2 . This action is physically 
well-motivated — the total angular momentum L is a  rigorously good quantum 
number. Since then, the other authors have been widely using the solutions of Per-
cival and Seaton. However, the solutions cannot be adopted to the above-mentioned 
AVT, which is a non-standard method, where m1 and m2 are input parameters, but 
not L and M. Nevertheless, the studies presented in this work are based on a method-
ology different from that in Ref. [29] and to our knowledge have not been conducted 
previously.

2  Evaluation of the integral involving arbitrary powers 
of trigonometric functions

First, we represent the Legendre polynomials in Eq. (1) as follows:

where � =
�+k−1

2
 . Note that 

(
�

�

)
 is the generalized binomial coefficient defined as

(3)V
l�
1
,m�

1
,l�
2
,m�

2

l1,m1,l2,m2

=

⟨
2∏

j=1

Yl�
j
,m�

j
(�j,�j)|V(R, r, �(�1,�1, �2,�2))|

2∏

j=1

Ylj,mj
(�j,�j)

⟩
.

(4)P�(cos �) = 2�
�∑

k=0

(
�

k

)(
�

�

)
cosk� ,
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In Appendix 1, we showed that the Eq. (4) is equivalent to the well-known expres-
sion [30, 31]

where 
[
�

2

]
 stands for the integer part of �

2
 . After substituting Eq. (2) into Eq. (4) and 

utilizing the trinomial expansion, the matrix elements, Eq. (3), read

where 
(

k

k1,k2,k3

)
=

k!

k1!k2!k3!
 . This formula can be straight implemented in any quantum 

chemistry package or atomic and molecular physics program, provided that the ana-
lytical form of such a general integral is known

with j = 1, 2 and non-negative integers n1, n2, n3, n4 . For simplicity, we henceforth 
omit the index j. We use mostly recommended and broadly accepted notation of the 
spherical harmonics, where the factor of (−1)m , i.e., the Condon–Shortley phase, is 
included in the associated Legendre polynomial (Pm

l
) , see Chapter 15.4 in Ref. [30]. 

Thus,

where l = 0, 1, 2,… , −l ≤ m ≤ l , and Nl,m is a normalization constant given by

For negative m values, the associated Legendre polynomial reads

(5)
(
�

�

)
=

�(� − 1)⋯ (� − � + 1)

�!
.

(6)P�(cos �) =
1

2�

[
�

2

]

∑

k=0

(−1)k
(2� − 2k)!

k!(� − k)!(� − 2k)!
cos�−2k� ,

(7)

V
l�
1
,m�

1
,l�
2
,m�

2

l1,m1,l2,m2

=
∑

�

V�(R, r)2
�

�∑

k=0

(
�

k

)(
�+k−1

2

�

) ∑

k1, k2, k3 ≥ 0

k1 + k2 + k3 = k

(
k

k1, k2, k3

)

×

2∏

j=1

I(k3, k1 + k2, k1, k2, l
�
j
,m�

j
, lj,mj),

(8)
I(n1, n2, n3, n4, l

�
j
,m�

j
, lj,mj) =∫

�

0
∫

2�

0

Y∗
l�
j
,m�

j

(�j,�j) cos
n1�j sin

n2�j

× cosn3�j sin
n4�j Ylj,mj

(�j,�j) sin �jd�jd�j

(9)Yl,m = Nl,mP
m
l
(cos �)eim�,

(10)Nl,m =

√
1

2�
N�
l,m

=

√
2l + 1

4�

(l − m)!

(l + m)!
.

(11)P−m
l

= (−1)m
(l − m)!

(l + m)!
Pm
l
.
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The integral I(n1, n2, n3, n4, l�,m�, l,m) , Eq. (8), can be factorized into two independ-
ent integrals:

2.1  Integral over �

Substituting cos � by x in Eq. (12) yields

Based on the Schmied expression [32],

we expand the first term inside the integral I� by means of Legendre polynomials 
Pl . Note that Pl(x) = P0

l
(x) , therefore, further we use the form of the above equation 

with the associated Legendre polynomials. We also represent the second term in the 
integral I� by the associated Legendre polynomials utilizing

Consequently, the considered integral (14) becomes

where

Dong and Lemus showed in Ref. [33] a general expression for the overlap integral 
of an arbitrary number of associated Legendre polynomials. Here, we present the 
proper formula adjusted to our problem of four associated Legendre polynomials, 
namely

(12)

I�(n1, n2, l
�,m�, l,m) = N�

l�,m�N
�
l,m ∫

�

0

cosn1� sin
n2� Pm�

l�
(cos �)Pm

l
(cos �) sin �d�,

(13)I�(n3, n4,m
�,m) =

1

2� ∫
2�

0

cosn3� sin
n4� ei(m−m

�)�d�.

(14)I�(n1, n2, l
�,m�, l,m) = N�

l�,m�N
�
l,m ∫

1

−1

xn1
�√

1 − x2
�n2

Pm�

l�
(x)Pm

l
(x)dx.

(15)xn =
∑

l=n,n−2,…

n!(2l + 1)

2
n−l

2

(
n−l

2

)
!(n + l + 1)!!

Pl(x), n = 0, 1, 2,… ,

(16)Pl
l
(x) = (−1)l(2l − 1)!!

�√
1 − x2

�l

.

(17)

I�(n1, n2, l
�,m�, l,m) =N�

l�,m�N
�
l,m

n1!(−1)
n2

(2n2 − 1)!!

∑

k1=n1,n1−2,…

�(n1, k1)

× ∫
1

−1

P0

k1
(x)Pn2

n2
(x)Pm�

l�
(x)Pm

l
(x)dx,

(18)�(n1, k1) =
2k1 + 1

2
n1−k1

2

(
n1−k1

2

)
!(n1 + k1 + 1)!!

.
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where

In Eqs. (20)–(22), ( :  :  : ) denotes a Wigner 3j symbol. It should be noted that the 
above formula for the overlap integral holds for all q1, q2, q3, q4 ≥ 0 , while for nega-
tive values, one has to apply Eq. (11). Moreover, the integral is equal to zero when 
p1 + p2 + p12 or p12 + p3 + p123 or p123 + p4 + p1234 is odd.

2.2  Integral over �

Let us now focus on the integral with respect to � , i.e., on Eq. (13). We represent the 
exponential function by means of the trigonometric ones using Euler’s formula and 
perform its binomial expansion. Then, we obtain

(19)

∫
1

−1

Pq1
p1
(x)Pq2

p2
(x)P

q3
p3
(x)Pq4

p4
(x)dx =

√
(p1 + q1)!(p2 + q2)!(p3 + q3)!(p4 + q4)!

(p1 − q1)!(p2 − q2)!(p3 − q3)!(p4 − q4)!

×
∑

p12

∑

p123

∑

p1234

G12G123G1234

×

√
(p1234 − q1234)!

(p1234 + q1234)! ∫
1

−1

P
q1234
p1234

(x)dx,

(20)
G12 = (−1)q12(2p12 + 1)

(
p1 p2 p12
0 0 0

)(
p1 p2 p12
q1 q2 − q12

)
,

|p1 − p2| ≤ p12 ≤ p1 + p2, q12 = q1 + q2, p12 ≥ q12,

(21)
G123 = (−1)q123(2p123 + 1)

(
p12 p3 p123
0 0 0

)(
p12 p3 p123
q12 q3 − q123

)
,

|p12 − p3| ≤ p123 ≤ p12 + p3, q123 = q1 + q2 + q3, p123 ≥ q123,

(22)
G1234 = (−1)q1234 (2p1234 + 1)

(
p123 p4 p1234
0 0 0

)(
p123 p4 p1234
q123 q4 − q1234

)
,

|p123 − p4| ≤ p1234 ≤ p123 + p4, q1234 = q1 + q2 + q3 + q4, p1234 ≥ q1234,

(23)∫
1

−1

P
q1234
p1234

(x)dx =

{
2 if p1234 = q1234 = 0

I(p1234, q1234) otherwise
,

(24)

I(p1234, q1234) =
[(−1)p1234 + (−1)q1234]2q1234−2q1234�

(
p1234

2

)
�

(
p1234+q1234+1

2

)

�

(
p1234−q1234+2

2

)
�

(
p1234+3

2

) .



2199

1 3

Journal of Mathematical Chemistry (2021) 59:2193–2205 

where

and i is the imaginary unit ( i2 = −1 ). As we showed in Appendix 2, the above inter-
nal integral may be written in the form of the beta function

Since there is a close relationship between the beta function and the gamma func-
tion, see Eq. (47) in Appendix 2, the integral over � reads

It is clear that this integral vanishes if |m − m�| + n3 + n4 is odd.

3  Compact expression

The matrix elements, Eq. (3), can be also found based on the theorem of addition of 
spherical harmonics [31, 34]

where � is the angle between two directions described by (�1,�1) and (�2,�2) , then

(25)
I�(n3, n4,m

�,m) =
1

2�

|m−m�|∑

k=0

�kik
(
|m − m�|

k

)

× ∫
2�

0

cos|m−m
�|−k+n3� sin

k+n4� d�,

(26)𝛿 =

{
1 for m ≥ m�

−1 for m < m�

(27)

∫
2�

0

cos|m−m
�|−k+n3� sin

k+n4� d� =
1

2
B

(|m − m�| − k + n3 + 1

2
,
k + n4 + 1

2

)

×
(
1 + (−1)|m−m

�|−k+n3
)

×
(
1 + (−1)|m−m

�|+n3+n4
)
.

(28)

I�(n3, n4,m
�,m) =

(1 + (−1)|m−m
�|+n3+n4)

4�

(
|m−m�|+n3+n4

2

)
!

|m−m�|∑

k=0

�kik
(
|m − m�|

k

)

× �

(|m − m�| − k + n3 + 1

2

)
�

(
k + n4 + 1

2

)

×
(
1 + (−1)|m−m

�|−k+n3
)
.

(29)P�(cos �) =
4�

2� + 1

�∑

m�=−�

Y∗
�,m�

(�1,�1)Y�,m�
(�2,�2),

(30)V
l�
1
,m�

1
,l�
2
,m�

2

l1,m1,l2,m2

=
�

�

V�(R, r)
4�

2� + 1

��

m�=−�

⟨Yl�
1
,m�

1

Yl�
2
,m�

2

�Y∗
�,m�

Y�,m�
�Yl1,m1

Yl2,m2
⟩.
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The closed-form expression for the integral with three spherical harmonics is given 
by [31, 34]

When we include Y∗
p,q

= (−1)qYp,−q , the matrix elements are as follows

In order to validate our mathematical derivations, we implemented both approaches 
in MATLAB [35] and performed calculations for the same large set of various input 
parameters. We obtained identical results, confirming the correctness of the findings.

4  Concluding remarks

We have derived the exact analytical angular matrix elements of the potential for the 
interaction of an atom with a closed-shell diatomic molecule, expanded in Legendre 
polynomials, in a basis set of products of two spherical harmonics. We presented 
two approaches. The first concerns the calculation of the integral involving arbitrary 
powers of trigonometric functions. The obtained results within this approach are 
generic and may be useful not only in studies of anisotropic molecular collisions 
but also in other different fields of theoretical physics and chemistry. The second 
approach is much shorter; we demonstrated the expression in a compact form that 
can be of great interest to experimentalists due to its coding simplicity, especially 
when adiabatic variational theory is applied.

Appendix 1

We demonstrate that the following representation for Legendre polynomials

where � =
�+k−1

2
 , is an alternative to the more common one [30, 31]

(31)
∫

�

0
∫

2�

0

Yp1,q1Yp2,q2Yp3,q3 sin �d�d� =

√
(2p1 + 1)(2p2 + 1)(2p3 + 1)

4�

×

(
p1 p2 p3
0 0 0

)(
p1 p2 p3
q1 q2 q3

)
.

(32)

V
l�
1
,m�

1
,l�
2
,m�

2

l1,m1,l2,m2

= (−1)m
�
1
+m�

2

√
(2l�

1
+ 1)(2l1 + 1)(2l�

2
+ 1)(2l2 + 1)

×
∑

�

V�(R, r)

(
l�
1
� l1

0 0 0

)(
l�
2
� l2

0 0 0

)

×

�∑

m�=−�

(−1)m�

(
l�
1

� l1
−m�

1
− m� m1

)(
l�
2

� l2
−m�

2
m� m2

)
.

(33)P�(x) = 2�
�∑

k=0

(
�

k

)(
�

�

)
xk,
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where 
[
�

2

]
 stands for the integer part of �

2
 . The generalized binomial coefficient is 

defined in Eq. (5). Since

one can see that the expression vanishes if � + k − 1 is even. In other words, when � 
and k have opposite parity, one of the terms in the product is always zero, and then 
the product is zero. On the other hand, based on

where n is non-negative integer, the generalized binomial coefficient can be written 
as follows

Let us now consider the case for even � and k. To carry out the summation over non-
zero terms, we take � = 2� and k = 2k� , then Eq. (33) is

When we apply

we obtain

The next step is to reverse the order of summation by taking k� = � − k��,

(34)P�(x) =
1

2�

[
�

2

]

∑

k=0

(−1)k
(2� − 2k)!

k!(� − k)!(� − 2k)!
x�−2k,

(35)

(
�+k−1

2

�

)
=

�+k−1

2

(
�+k−1

2
− 1

)
⋯

(
�+k−1

2
− � + 1

)

�!

=
1

�!

�−1∏

r=0

(
� + k − 1

2
− r

)
,

(36)
(
2n − 1

2

)
! =

(
−
1

2

)
!
(2n − 1)!!

2n
,

(37)
(
2n + 1

−2

)
! =

(
−
1

2

)
!

(−2)n

(2n − 1)!!
,

(38)
(

�+k−1

2

�

)
=

(
�+k−1

2

)
!

�!
(

�+k−1

2
− �

)
!
= 2−�(−1)

�−k

2

(� + k − 1)!!(� − k − 1)!!

�!
.

(39)P2�(x) = 22�
�∑

k�=0

(
2�

2k�

)
2−2�(−1)

2�−2k�

2

(2� + 2k� − 1)!!(2� − 2k� − 1)!!

(2�)!
x2k

�

.

(40)(2n)! = (2n − 1)!!n!2n,

(41)P2�(x) =
1

22�

�∑

k�=0

(−1)�−k
� (2� + 2k�)!

(2k�)!(� + k�)!(� − k�)!
x2k

�

.
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and revert to a form involving � by recalling that � = 2� , which ultimately leads to

In the second case, where � and k are odd, we proceed similarly but we take 
� = 2� + 1 and k = 2k� + 1 . Then, we obtain

When we write the upper limit of summation for the first case as 
[
�

2

]
 , it can be noted 

that Eqs. (43) and (44) are exactly the same and fully agree with Eq. (34).

Appendix 2

Here, we present how to evaluate the following type of integral (which appeared in 
Eq. (25))

where s ≥ 0 and t ≥ 0 . Let us take the beta function with real and positive arguments

which may be expressed by the gamma function

The latter equation implies that B(m, n) = B(n,m) . By inserting the substitution 
x = cos2u into Eq. (46), we get

When we replace 2m − 1 by s and 2n − 1 by t, we have

(42)P2�(x) =
1

22�

�∑

k��=0

(−1)k
�� (4� − 2k��)!

k��!(2� − k��)!(2� − 2k��)!
x2�−2k

��

,

(43)P�(x) =
1

2�

�

2∑

k��=0

(−1)k
�� (2� − 2k��)!

k��!(� − k��)!(� − 2k��)!
x�−2k

��

.

(44)P�(x) =
1

2�

[
�

2

]

∑

k��=0

(−1)k
�� (2� − 2k��)!

k��!(� − k��)!(� − 2k��)!
x�−2k

��

.

(45)∫
2�

0

cossx sin
tx dx,

(46)B(m, n) = ∫
1

0

xm−1(1 − x)n−1dx,

(47)B(m, n) =
� (m)� (n)

� (m + n)
.

(48)B(m, n) = 2∫
�∕2

0

cos2m−1u sin
2n−1u du.
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This expression almost corresponds to the one we are interested in, i.e., Eq. (45). 
The only problem is the limit of integration. Note that

The next step is a change of variables: u = v + �∕2 . Since cos(v + �∕2) = − sin v , 
sin(v + �∕2) = cos v , and remembering that B

(
s+1

2
,
t+1

2

)
= B

(
t+1

2
,
s+1

2

)
 , we may 

write

In a similar manner, we have

Again, we carry out a change of variables: v = x + � . By taking into account that 
cos(x + �) = − cos x and sin(x + �) = − sin x , we receive

We collect intermediate solutions

and finally obtain
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(49)1

2
B
(
s + 1

2
,
t + 1

2

)
= ∫

�∕2

0

cossu sin
tu du = I(1).

(50)∫
�

0

cossu sin
tu du = I(1) + ∫

�

�∕2

cossu sin
tu du = I(2).

(51)I(2) = I(1) + ∫
�∕2

0

(− sin v)s costv dv = I(1) + (−1)sI(1) = I(1)(1 + (−1)s).

(52)∫
2�

0

cossv sin
tv dv = I(2) + ∫

2�

�

cossv sin
tv dv = I(3).

(53)
I(3) = I(2) + ∫

�

0

(− cos x)s(− sin x)tdx = I(2) + (−1)s+tI(2)

= I(2)
(
1 + (−1)s+t

)
.

(54)I(3) = I(2)
(
1 + (−1)s+t

)
= I(1)(1 + (−1)s)

(
1 + (−1)s+t

)

(55)∫
2�

0

cossx sin
tx dx =

1

2
B
(
s + 1

2
,
t + 1

2

)
(1 + (−1)s)

(
1 + (−1)s+t

)
.
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